3D Visualization for SIMS Analysis

Q. Taoa,\ast, A. Hendersonb, S. E. Reichenbachc, R. Lindquistc, X. Tianc, J. C. Vickermanb

a GC Image, LLC, PO Box 57403, Lincoln NE 68505, USA; \ast Email: qtao@gcimage.com
b Surface Analysis Research Centre, University of Manchester, 131 Princess Street, Manchester, UK
c Computer Science & Engineering, University of Nebraska – Lincoln, Lincoln NE 68588-0115, USA

- **Goal:** An efficient, intuitive, and powerful SIMS data visualization suite
 - Primary ion sources based on molecular clusters open the door to molecular depth analysis using SIMS
 - A three dimensional (3D) chemical description of a solid sample is intriguing

- **Challenge:** High demand on computing resources and visual presentations
 - A large number of analysis layers
 - A large number of pixels at each layer
 - High resolution mass spectrum at each pixel

- **Approach:**
 - A data compression scheme for rapid loading of the entire 3D data space
 - Interactive views of 3D perspectives and 2D layers
 - Interactive color maps and visibility controls to reveal detailed structures

- **A 3D perspective view**

 - Three 2D orthogonal slices through the 3D space

- **Interactive views: 3D and 2D**

- **Interactive Color Map**
 - A customized color space
 - A controllable log-exponential value-to-color mapping function
 - Supports real-time interactive adjustment allowing the human eye to distinguish many more distinct gradations in 3D data space

- **Selected Ion Color Map**
 - **Selected Ion Intensity Space:**
 - Computes selected ion count on user-specified ion ranges
 - Supports the combination of multiple ranges for various purposes
 - Remove interferences
 - Reveal regions of interest
 - Classify the data points

- **Interactive Visibility Control**
 - Data Point Visibility
 - Filter data points based on their intensities to reveal detailed 3D structures
 - An intensity space is defined by the maximum and minimum intensities
 - A user-specified threshold controls the percentage of the visible intensity space
 - Supports real-time interactive adjustment

- **Future Work**
 - **Multiple Visual Maps**
 - **TIC map:** total intensity count (TIC) at each data point
 (i.e., the sum of intensities in the entire spectrum of each point)
 - **SIC map:** selected ion count (SIC) at each data point
 (i.e., the intensity at a specific ion range of interest)
 - **ROI map:** region of interest (ROI) in the entire data space such as a "Cell Map" that indicates the points inside a cell
 - **Multiple 3D Visuals:** show multiple scalar maps simultaneously such as TIC and SIC control various 3D visuals including different shapes, sizes and colors